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In recent papers the heterogeneous nature of photosystem (PS) II core phosphorylation has 
been revealed (Giardi et al., BBRC 176, 1 2 9 8 -1 3 0 5  (1991); Plant Physiol. 100, 1 9 4 8 -1 9 5 4  
(1992)). In this paper the action of endogenous and exogenous phosphatases both on the dis­
tribution of phosphorylated PS II core populations and on herbicide-binding activity in pho­
tosystem II preparations from Spinacia oleracea L. has been investigated. The results indicate 
that these phosphatases modify the photosystem II core phosphorylation heterogeneity at a 
different level. Dark incubation causes a partial dephosphorylation of D, and D2 proteins by 
endogenous phosphatase(s) and changes the relative distribution of phosphorylated photosys­
tem II core populations, while the action of the alkaline phosphatase leads to extensive de- 
phosphorylation and to the detachment of PsbH protein from the photosystem II core. De­
phosphorylation by the two alternative methods results in a differential modification of herbi­
cide-binding activity. It is suggested that photosystem II heterogeneity with respect to the 
herbicide action, observed in vivo, could be a consequence of PS II core phosphorylation 
heterogeneity.

Introduction

In recent papers the heterogeneous nature o f  
photosystem II (PS II) core phosphorylation has 
been shown. Fou r PS II core populations ch arac­
terized by the differing extent of phosphorylation  
on C P 4 3 , D 2, D, and PsbH  proteins have been iso­
lated from  grana regions o f spinach thylakoids [1, 
2], So far the properties o f these isolated PS II core  
populations can be summarized as follows: i) their 
relative distribution responds to conditions that 
regulate the activity o f light-induced kinase [2, 3];
ii) at least two populations are detected in thyla­
koids adapted to com plete darkness [3]; iii) these 
complexes differ in their sensitivity to photoinhibi- 
tory conditions [4]; iv) they show varying ability to  
transfer electrons from  diphenylcarbazide (D P C ) 
to dichlorophenol indophenol (D C P IP ), the m ost 
phosphorylated population being inactive [2, 3]; 
v) m oreover, their affinity constants for the bind­
ing o f PS II-directed herbicides are quite different 
[1 ,3 ] , It is generally accepted that PS II herbicides 
such as phenylurea, triazines, and phenolic com ­
pounds com pete with plastoquinone (PQ ) at its 
Q B-binding site preventing oxidation o f  reduced
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Q a [5], In the present work, by com parative studies 
with isolated PS II particles and PS II core, the 
m odification induced by dephosphorylation treat­
ments both on PS II core phosphorylation hetero­
geneity and on herbicide-binding dom ain is inves­
tigated. The experim ental results suggest that the 
action o f exogenous and of endogenous phospha­
tases is different. This observation could explain  
the con trad ictory  conclusions reported in litera­
ture concerning the effect o f PS II phosphoryla­
tion on the herbicide-binding activity [6 - 8 ] .

Materials and Methods

Phosphorylation and isolation of membranes

Phosphorylation o f spinach (Spinacia oleracea 
L .) leaves was performed in vivo by incubation  
in the presence on [,2P]orthophosphate (5000  
C i/m m ol) as previously described [9]. Isolated  
spinach thylakoids were resuspended in the buffer 
containing 50 m M  Tricine (pH  7.5), 15 m M  N aC l, 
5 mM M gC l2 and 0.1 m sucrose and immediately 
solubilized for isolation o f PS II mem branes [1, 3]. 
Dephosphorylation experiments were performed  
by the two alternative methods, dark incubation of  
thylakoids for 3 h or treatm ent o f PS II particles 
(0 .5  m g/m l chlorophyll) for 10 min with a highly 
purified alkaline phosphatase (Sigm a) resuspend­
ed in the above buffer (pH  7.9) at 15 units/ml. The
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PS II particles, solubilized in 1%  n-dodecyl ß-D- 
m altoside (0 .5  mg Chl/m l), were applied to the 
cathode region o f a flat-bed o f granulated gel as 
described [1]. Under these conditions four distinct, 
differently phosphorylated PS II core populations 
were separated [2],

Herbicide-binding measurements

The binding experiments were performed as re­
ported by Tischer and Strotm ann [10] for PS II- 
enriched mem branes. The herbicide binding to iso­
lated PS II core was evaluated by determining the 
distribution o f radiolabelled herbicide (initial con ­
centration 10 |!M) associated to the PS II core pop­
ulations on the isoelectrofocusing bed according  
to Giardi et al. [1].

Chlorophyll ( Chi) and electron transfer

These measurem ents were carried out as rep ort­
ed by Hipkins and Baker [11]. Electron transfer 
from  D PC  (150 (i m ) to D C P IP  (100 |i m ) was m eas­
ured spectrophotom etrically at 600 nm in samples 
o f 15 |ig Chl/m l under 1200 |iE/m2 s illumination  
in 1 cm  optical path at 4 °C.

SDS-PAGE and immunoblot

S D S -P A G E  in the presence o f 6 m  urea was per­
formed using a 1 2 -1 7 %  linear acrylam ide g ra­
dient. Densitometrie analyses o f Coom assie- 
stained gels were carried out using a Shimadzu  
CS 9000. F o r  im m unoblot the resolved proteins 
were transferred to a nitrocellulose filter and  
probed with antibodies. Quantification of 9 kD a  
protein {psbH gene product) was perform ed by 
im m unoblot o f a serial dilution.

Radioactivity measurements

R adioactivity was determined by scintillation  
counting using Optiphase Safe (L K B ) as the co ck ­
tail and a Packard tri-carb 2200 C A  liquid scintil­
lation analyzer. Counting efficiencies were deter­
mined on similar samples containing radioactive  
standards. Radiolabelled polypeptides were visu­
alized by autoradiography o f Coom assie-stained  
gels using hyperfilm T M  M P (A m ersham ). The 
autoradiogram s were scanned in a Shimadzu 9000  
densitometer.

Herbicides and acceptors

B rom oxynil, 9 .0  C i/m ol, terbutryn, 9.8 Ci/m ol, 
and chlorbrom uron, 8 .6  C i/m ol, were a kind gift 
from  Ciba-G eigy; ioxynil, 9 .5  C i/m ol, was a gift 
from M ay and Baker Ltd . (2',3 '-3H )i-dinoseb , 
490  C i/m ol, was a kind gift from  D r. W . Oettmeier 
o f the R uhr-U niversität (B ochum , Germ any). 
D C P IP , 2,6-dichlorophenol indophenol, and 
D PQ , decylplastoquinone, were purchased from  
Sigma.

Results and Discussion

Fig. 1 shows the typical pattern o f phosphory­
lated PS II core preparations isolated from spin­
ach PS II particles using the isoelectrofocusing 
(I E F )  and sucrose gradient ultracentrifugation  
m ethod previously reported [2, 3]. These PS II core  
populations have been referred to as cores a, b, c 
and d in increasing order o f the extent of their 
phosphorylation. The com plexes were composed  
o f C P 47, C P 4 3 , D 2, D ,, Cyt b559 proteins present 
in the same stoichiom etry but with a different de­
gree o f phosphorylation. M oreover, the presence 
o f a protein at about 9 kD a, attributed to PsbH  
phosphoprotein, was revealed and its content in 
each core was inversely related to  the phosphory­
lation o f D , and D 2 proteins. The com plex with the 
m ore acidic isoelectric point (p /) , i.e. complex d, 
showed the highest content o f radioactivity local­
ized mainly on D ,. This activity was 40 times that 
found in com plex a (see ref. [ 2 - 4 ] ) .  To elucidate

Fig. 1. SD S-PAG E (A ) and autoradiography (B) ana­
lyses of heterogeneous PS II core populations obtained 
by IE F  of PS II particles.
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the effect o f the phosphorylation process in m odi­
fying the herbicide-binding activity, we proceeded  
to exam ine the consequences o f PS II dephosphor­
ylation by using endogenous phosphatase(s) and 
an alkaline exogenous phosphatase. F o r  this pur­
pose spinach leaves were phosphorylated in vivo by 
incubation in [32P]orthophosphate. T o  inactivate  
the kinase(s) and to obtain some degree o f dephos­
phorylation o f PS II core proteins by endogenous 
phosphatase(s), prior to PS II particle extraction , 
phosphorylated thylakoids were incubated in co m ­
plete darkness for some hours (Fig . 2, lanes 1 and  
2, method A ). U nder our conditions, dark incuba­
tion o f thylakoids never completely reverted phos­
phorylation o f the PS II cores. A m ong the phos­
phorylated PS II core proteins, dephosphorylation  
was m ore evident in Dj and D 2 proteins; a de­
creased content o f the most phosphorylated core  
com plex d was also observed (Scheme 1). In order 
to obtain complete dephosphorylation, PS II p ar­
ticles isolated from phosphorylated thylakoids 
were treated with a highly purified alkaline phos­
phatase. A fter 10 min o f incubation, com plete de­
phosphorylation was observed (Fig . 2, lane 3, 
method B). Since the alkaline phosphatase is not 
selective, it caused extensive dephosphorylation  
but, surprisingly, increased the num ber o f PS II 
core populations obtained by isoelectric focusing  
(I E F )  (Scheme 1). The pattern o f PS II core popu­
lations changed both in number and in the isoelec- 
trofocusing point of the populations. Eight PS II 
core fractions were isolated and analyzed by SDS- 
P A G E  and immunoblot with antibodies against

RELATIVE % DISTRIBUTION OF PSD POPULATIONS

a b e d a b e d 1,243,4,5,6,7,8

Scheme

the main PS II polypeptides. F ro m  Fig. 3, showing 
the results o f  a serial dilution with antibodies 
against 9 kD a, it is clear that these PS II core pop­
ulations differ in the relative content o f PsbH p ro­
tein. W e conclude that also the separation o f dif­
ferently phosphorylated PS II core populations 
obtained by isoelectrofocusing was mainly a con ­
sequence o f the different content o f PsbH protein  
bound to each PS II core population. The electron  
transfer activity o f differently phosphorylated  
m em branes and their herbicide-binding activity  
have also been studied. Table I reports the electron  
transfer activity o f phosphorylated PS II core pop­
ulations and the inhibition o f this activity by the 
herbicide ioxynil. In order to observe the herbicide 
inhibition in isolated PS II cores, low con centra­
tions o f reagents D P C  and D C P IP  had to be used.
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Fig. 2. Autoradiography of phosphorylated and dephos- 
phorylated membranes. Lane 1, PS II particles from 
phosphorylated thylakoids; lane 2, PS II particles de- 
phosphorylated by method A; lane 3, PS II particles de- 
phosphorylated by method B.

PS II core 1 2 3 4 5 6  7 8
Fig. 3. Immunoblot of PS II core populations obtained 
by IE F  of PS II particles dephosphorylated by method
B, using antibodies against PsbH protein.
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Table I. Electron transfer and its inhibition by herbicides 
in differently phosphorylated PS II core populations. 
Electron transfer rates were measured from DPC  
(150 |j m ) to D CPIP (100 (i m ). The activity is represented 
as (imol D CPIP reduced/mg Chi h. % Inhibition repre­
sents inhibition observed in the presence of herbicide 
ioxynil (10 (iM ). n.d.: not determined. The values of elec­
tron transfer are an average of five independent experi­
ments; SE approx. 13%.

Core
populations

Electron transfer 
Control % Inhibition

a 215 100
b 143 21
c 167 26
d 10 n.d.

Phosphorylation resulted in a reduced ability, 
about 18% , to transfer electrons from  D P C  to  
D C P IP , com pared to control thylakoids obtained  
from  leaves dark-adapted for 12 h (Table II). A  
similar electron transfer reduction, about 15% , 
was observed in PS II particles treated with the 
alkaline phosphatase (Table II). Fig. 4  shows the 
effect o f dephosphorylation obtained by the two 
m ethods on the binding o f herbicide brom oxynil 
to PS II particles. While dephosphorylation ob­
tained by dark adaptation o f thylakoids decreased  
the binding affinity with no effect on the number 
o f herbicide-binding sites, the dephosphorylation  
prom oted by the alkaline phosphatase caused a 
great decrease in the number o f binding sites, 
about 5 0 % , with modest effect on the binding af­
finity. Due to the alkaline pH used for activation, 
all the controls were performed at the same alka­
line pH ; m oreover, similar results were obtained  
using an acidic phosphatase (data not shown). W e 
also determined the herbicide-binding capacity  o f  
the PS II core populations after dephosphoryla­
tion using a recent method based on the observa­
tion that PS II-directed herbicides, applied on the 
isoelectrofocusing plate together with solubilized

Table II. Electron transfer activity of PS II particles 
measured as reported in Table I. The values are an aver­
age of 10 experiments. SE approx. 8%.

PS II particle types Electron transfer

Phosphorylated 254
Dephosphor., method A 310
Dephosphor., method B 262

free herbicide

Fig. 4. Double reciprocal plots of bound vs. free herbi­
cide bromoxynil to PS II particles: triangles, phosphory­
lated; squares, dephosphorylated by method A; circles, 
dephosphorylated by method B.

PS II particles, m igrate in close association with 
the PS II core populations [1]. This herbicide bind­
ing was thought to be specific because it was 
absent in m em branes isolated from the atrazine- 
resistant m utant Senecio vulgaris. Fig. 5 shows 
that the distribution o f radiolabelled herbicide ter- 
butryn am ong the focused PS II core populations 
seems to be correlated to the content of PsbH p ro­
tein. This correlation has been confirmed with oth­
er classes o f PS II herbicides such as phenylurea 
and phenolic herbicides as well as using an acidic 
phosphatase (data not shown). This observation is 
in accordance with the current idea that an over­
lapping binding dom ain participates in the binding 
o f herbicides [5, 12]. Thus, one o f the possible 
explanations for the differential effects on herbi­
cide-binding dom ain observed after dark incuba­
tion and dephosphorylation by exogenous phos­
phatase is that the form er method acts on D, and 
D 2 and the latter on all PS II core polypeptides. In 
our opinion these different mechanisms could ex­
plain the con trad ictory  conclusions reported in the 
literature concerning the effect o f phosphorylation  
on herbicide-binding activity [3, 6 - 8 ] ,  Our results 
indicate that herbicide-binding activity o f PS II



M. T. Giardi • Heterogeneity of Photosystem II Core Phosphorylation 245

A 100% *

A
m A

▲
•0 _ •

PSII core a b c d
P1 5J5 4.9 4.8 4.7

B 100%
t

•▲ •
▲ •

▲
▲
•

0 _ t
♦ t

PSII core i 2 3 4 5 6 7 8

P 1 5.8 5.7 5.6 5.4 5-3 5.1 5.0 4.9

Fig. 5. % Recovery of radioactive herbicide associated 
to PS II core populations (triangles) and % recovery of 
PsbH protein (circles) per unit chlorophyll relative to the 
PS II core population with higher pI. A, PS II core pop­
ulations from phosphorylated PS II particles; B, PS II 
core populations from PS II particles dephosphorylated 
with method B (see Scheme 1).

cores directly responds to  the m odification of  
phosphorylation heterogeneity.

The PsbH  protein has been detected in thyla­
koids as a 9 kD a phosphoprotein and has sub­
sequently been shown to be a protein o f photosys­
tem II [13]. Although the precise function o f this 
protein is unclear, it has been suggested that it
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plays a role in regulating and stabilizing secondary  
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none acceptors QA and Q B [14]. This suggestion is 
in accordance with our experim ental observations. 
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